目前了解到的 MATLAB 中分类器有: K 近邻分类器,随机森林分类器,朴素贝叶斯,集成学习方法,鉴别分析分类器,支持向量机。现将其主要函数使用方法总结如下,更多细节需参考 MATLAB 帮助文件。 设 训练样本: train_data % 矩阵,每行一个样本,每列一个特征 训练样本标签: train_label % 列向量 测试样本: test_data 测试样本标签: test_label K 近邻分类器 ( KNN ) mdl = ClassificationKNN.fit(train_data,train_label,'NumNeighbors',1); predict_label = predict(mdl, test_data); accuracy = length(find(predict_label == test_label))/length(test_label)*100 随机森林分类器( Random Forest ) B = TreeBagger(nTree,train_data,train_label); predict_label = predict(B,test_data); 朴素贝叶斯 ( Na?ve Bayes ) nb = NaiveBayes.fit(train_data, train_label); predict_label = predict(nb, test_data); accuracy = length(find(predict_label == test_label))/length(test_label)*100; 集成学习方法( Ensembles for Boosting, Bagging, or Random Subspace ) ens = fitensemble(train_data,train_label,'AdaBoostM1' ,100,'tree','type','classification'); predict_label = predict(ens, test_data); 鉴别分析分类器( discriminant analysis classifier ) obj = ClassificationDiscriminant.fit(train_data, train_label); predict_label = predict(obj, test_data); 支持向量机( Support Vector Machine, SVM ) SVMStruct = svmtrain(train_data, train_label); predict_label = svmclassify(SVMStruct, test_data)